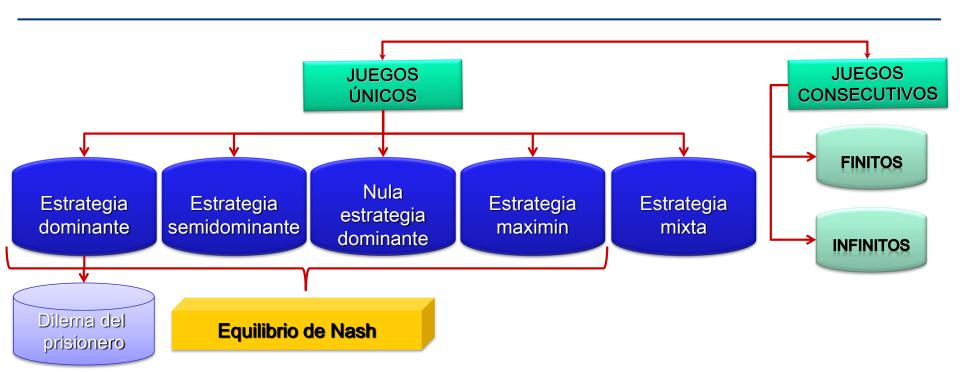

MICROECONOMÍA

Teoría, Simuladores Computacionales y Retos

Descargue la versión Kindle


Descargue la versión Kindle

Miguel Cervantes Jiménez, aborda los principales temas de la Teoría Microeconómica Neoclásica, con un enfoque que puede alimentar su escepticismo o bien volverlos adeptos; prólogo de Dario Ibarra Zavala

TEORÍA DE JUEGOS

OBJETIVOS

 Objetivo general: exponer las distintas estrategias que se pueden tomar en la teoría de juegos.

Objetivos particulares:

- ✓ definir los elementos que integran una matriz de pagos;
- ✓ explicar la estrategia dominante de un jugador; incluido el dilema del prisionero;
- ✓ resolver juegos de estrategia dominante;
- ✓ definir e identificar el equilibrio de Nash;
- ✓ explicar las estrategias mixtas y la maximin, e
- ✓ identificar la solución de los juegos repetidos y con barreras a la entrada.

Juegos de estrategia dominante

Matriz de pagos de un juego de		Jugador B	
estrategia domin	ŭ	Estrategia B ₁	Estrategia B ₂
Tura dan A	Estrategia A ₁	8,5	4,6
Jugador A	Estrategia A ₂	12,9	7,11

Juegos de estrategia dominante: el dilema del prisionero

Matriz de pagos de un juego de		Jugador B	
estrategia domii	• •	Confesar	No confesar
Incodes A	Confesar	-10,-10	-1,-16
Jugador A	No confesar	-16,-1	-2,-2

Juegos de estrategia semidominante

Matriz de pagos de un juego de		Jugador B	
estrategia semid	8 0	Estrategia B ₁	Estrategia B ₂
Tura dan A	Estrategia A ₁	8,5	4,11
Jugador A	Estrategia A ₂	12,9	7,6

Juego de equilibrio de Nash

Matriz de pagos de un juego de		Jugador B	
equilibrio de Na		Estrategia B ₁	Estrategia B ₂
Tura dan A	Estrategia A ₁	5,3	0,0
Jugador A	Estrategia A ₂	0,0	3,5

Juego de estrategia mixta

Matriz de pagos de un juego de		Jugador B	
estrategia mixta		Estrategia B ₁	Estrategia B ₂
Tura dan A	Estrategia A ₁	-9,9	9,-9
Jugador A	Estrategia A ₂	9,-9	-9,9

Juego de estrategia maximin estable

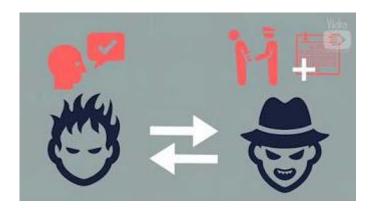
		Jugador B		
Matriz de estrategias r		\mathbf{B}_1	${f B}_2$	\mathbf{B}_3
	A_1	9,1	1,9	2,8
Jugador A	A_2	6,4	5,5	4,6
	A_3	7,3	8,2	3,7

Juego de estrategia maximin inestable

		Jugador B		
Matriz de estrategias r		\mathbf{B}_1	$ m B_2$	\mathbf{B}_3
	A_1	9,1	1,9	2,8
Jugador A	A_2	6,4	4,6	5,5
	A_3	7,3	8,2	3,7

Juegos repetidos finitos

- Juego 1: A confiesa y B confiesa
- Juego 2: A confiesa y B confiesa
- Juego 3: A confiesa y B confiesa
- Juego 4: A confiesa y B confiesa
- Juego 5: A confiesa y B confiesa


Juegos repetidos infinitos

- Juego 1: A confiesa y B confiesa
- Juego 2: A confiesa y B confiesa
- Juego 3: A no confiesa y B confiesa
- Juego 4: A no confiesa y B no confiesa
- Juego 5: A no confiesa y B no confiesa
 - Juego 6: A confiesa y B no confiesa
 - Juego 7: A confiesa y B confiesa
 - Juego 8: A confiesa y B confiesa
 - Juego 9: A confiesa y B confiesa

La inestabilidad de la colusión

		Empresa 2 (E ₂)	
		Coopera	No Coopera
	Coopera	$\frac{1}{4}\frac{\beta_0}{\beta_1} , \frac{1}{4}\frac{\beta_0}{\beta_1}$	$\frac{1}{4}\frac{\beta_0}{\beta_1} , \frac{2}{4}\frac{\beta_0}{\beta_1}$
Empresa 1 (E ₁)	No Coopera	$\frac{2}{4}\frac{\beta_0}{\beta_1} , \frac{1}{4}\frac{\beta_0}{\beta_1}$	$\frac{1}{3}\frac{\beta_0}{\beta_1} , \frac{1}{3}\frac{\beta_0}{\beta_1}$

Videos

Dilema del prisionero

Equilibrio de Nash

Juegos cooperativos

Estrategia dominante