MÉXICO ANTE LA URGENCIA CLIMÁTICA: CIENCIA, POLÍTICA Y SOCIEDAD

COLECCIÓN ALTERNATIVAS
APUNTES ACERCA DEL LUGAR DEL CONOCIMIENTO ECONÓMICO EN LOS ANÁLISIS DEL IPCC

Ángel de la Vega Navarro*

INTRODUCCIÓN

Los trabajos del IPCC, por los orígenes de este organismo y por su objeto de estudio, están estrechamente relacionados con el conocimiento científico, entendido éste como el producido por las ciencias físicas y naturales. ¿Qué lugar tiene el conocimiento económico? La economía, como otras ciencias sociales, podría ubicar sus contribuciones en el mismo nivel que aquellas que estudian los fenómenos complejos del cambio climático. Esto, sobre todo, cuando un objetivo central desde los primeros informes del IPCC ha sido demostrar la relación entre la actividad humana y el calentamiento global.

En la práctica, se pide a la economía intervenir después de esa demostración, una tarea que corresponde al Grupo de Trabajo I (en adelante GT-I), cuyo informe es el primero en ser publicado con un título significativo: The physical science basis. La economía interviene en el Grupo de Trabajo II (Impactos, adaptación y vulnerabilidad) y en el III (mitigación), sobre todo para medir y calcular, para construir escenarios, para proporcionar datos numéricos que den seriedad a la elaboración de políticas. La economía que se busca es aquella que corresponda mejor a los requerimientos de los científicos del GT-I y a sus formas de trabajo.

En este trabajo, se analiza el lugar y papel que se atribuye a la economía en la división del trabajo que se instaura en la elaboración de los informes del IPCC, tomando como base el reciente Quinto Informe publicado en tres volúmenes y un informe de síntesis entre septiembre 2013 y octubre 2014. Se trata no ser ex-

* Profesor del Posgrado de Economía y del Posgrado de Ingeniería de la UNAM.
haustivos —tarea menos que imposible— sino abrir algunas líneas de reflexión y crítica que puedan ser continuadas en trabajos futuros a partir de los objetivos y principales resultados del IPCC. Después se revisará en las contribuciones del GT-I las conexiones con la mitigación y el papel especial del sistema energético. El texto continúa con el lugar y papel de la economía en la división del trabajo que se instaura en los informes del IPCC y la traducción de los enfoques económicos al plano de las políticas. Finalmente, revisa los problemas de la evaluación económica en los impactos y la adaptación.

EL IPCC: OBJETIVOS Y PRINCIPALES RESULTADOS

El IPCC fue creado en 1988 por la WMO (World Meteorological Organization) y el UNEP (United Nations Environmental Program) para sistematizar la literatura científica relevante para entender las bases del cambio climático provocado por las actividades humanas, así como la información científica, técnica y socioeconómica para evaluar los riesgos e impactos socioeconómicos y ambientales de ese fenómeno. Se le fijó también como objetivo formular estrategias para enfrentar esos riesgos e impactos, en particular opciones para la adaptación y la mitigación, con una restricción: no prescribir decisiones, pues éstas corresponden al debate democrático y a los procesamientos específicos de las políticas públicas nacionales e internacionales. Como se insiste en reuniones y presentaciones de ese organismo: “los Reportes del IPCC son políticamente relevantes, pero nunca políticamente prescriptivos”.

El matiz que introduce esa fórmula no deja fuera, sin embargo, la necesidad de una reflexión sobre la relación entre conocimiento y políticas, una temática general, pero que también ha sido objeto de estudios sobre los procedimientos y prácticas del IPCC (Bernhardt, 2012). El IPCC se situaría así no solamente en la interface entre la ciencia y las políticas, sino entre la ciencia y la política a secas, tomando en cuenta que la participación de científicos de todo el mundo, en la elaboración de sus informes, genera una fuente sin precedente de conocimientos sobre el cambio climático, pero también que hacedores de políticas y políticos están presentes en momentos cruciales del proceso.

En esas condiciones, los informes del IPCC se han convertido en llamadas de atención para gobiernos y sociedades acerca de los riesgos que representa la activi-

1 Salvo excepciones, las citas en inglés se mantendrán en esta lengua; cuando se traduzcan se señalará y la responsabilidad es del autor.
dad humana para la temperatura global con consecuencias en diferentes ámbitos. En ellos, se ha dado un progreso en la comprensión del cambio climático, con una atribución de sus causas cada vez con mayor certeza:

- First Assessment Report (FAR, 1990): “detección inequívoca”.
- Second Assessment Report (SAR, 1995): “balance de evidencias que sugieren la perceptible influencia humana”.
- Third Assessment Report (TAR, 2001): “la mayoría del calentamiento de los pasados 50 años se debe probablemente (2 de 3) a las actividades humanas”.
- Assessment Report 4th (AR4, 2007): “la mayoría del calentamiento se debe probablemente (9 de 10) a gases de efecto invernadero”.
- Assessment Report 5th (AR5, 2013): “Es muy probable (95 de 100) que la influencia humana ha sido la causa dominante…”

A lo largo de esos informes, en un cuarto de siglo, las conclusiones fundamentales científicas de la más variada procedencia no han cambiado básicamente, fruto de la revisión y análisis de miles de publicaciones científicas:

- las emisiones provenientes de las actividades humanas están causando el calentamiento global y agravando las perspectivas futuras;
- están presentes ya consecuencias en diferentes planos: las temperaturas globales suben provocando disrupciones climáticas; glaciares y el casquete polar se están derritiendo, los niveles del mar están en ascenso; eventos climáticos extremos son más frecuentes y más severos, se extinguen animales y plantas; se desorganiza la producción de alimentos y el aprovisionamiento de agua, etc. (IPCC 2014a) Una consecuencia del aumento del CO₂ que ha aparecido con más relieve recientemente: los océanos son cada vez más ácidos con graves efectos sobre la vida marina, en particular sobre los arrecifes de coral.
- Las razones para preocuparse y actuar son cada vez más claras: es posible mantener el aumento de la temperatura bajo 2°C, pero es indispensable una pronta y significativa reducción de emisiones.

2 Se presta a discusiones de diverso tipo el sentido de elevar la probabilidad hasta ese nivel, una de las contribuciones del Grupo de Trabajo I al Quinto Informe, publicado en septiembre de 2013.
3 El objetivo de no superar 2°C fue adoptado en la Conferencia de Cancún (2010). En el informe de la conferencia se dice con toda claridad que si los gobiernos se comprometen es posible alcanzar ese objetivo con las tecnologías existentes. Entre más esperen, será más costoso y más dependerán
La reducción de emisiones mundiales de GEI puede cifrarse: deberá situarse entre 40 y 70% hacia 2050 en relación con el volumen de emisiones de 2010.

CONTRIBUCIONES DEL GRUPO DE TRABAJO I AL QUINTO INFORME: CONEXIONES CON LA MITIGACIÓN Y EL PAPEL ESPECIAL DEL SISTEMA ENERGÉTICO

Las principales contribuciones fueron expuestas en el capítulo 3. Con base en esos resultados se pasa usualmente a cuestiones en las cuales se considera la participación de los economistas: ¿cómo se realizará una adaptación al cambio climático?, ¿qué medidas de mitigación habrá que tomar?, ¿qué cultivos conviene desarrollar en tal o cual región?, ¿qué energías renovables desarrollar de manera prioritaria? Más adelante se analizarán algunos temas relacionados con la adaptación al cambio climático, pero los resultados del GT-1 llevan de manera inmediata a la urgencia de la mitigación.

Conexiones de los resultados del GT-1 con la mitigación del cambio climático

La mitigación del cambio climático tiene por objeto controlar las fuentes humanas del cambio climático y sus efectos cumulativos, limitar las emisiones de GEI y desarrollar procesos para removerlos de la atmósfera.

Se ha señalado que buena parte del análisis económico y de las políticas relacionadas con la mitigación no reflejan correctamente la urgencia que deberían despertar los resultados anteriormente señalados. Un ejemplo: si se tomaran en serio el carácter esencialmente irreversible y cumulativo del CO2 se daría un mayor peso a las actuales emisiones respecto a las futuras, lo cual no se constata, por ejemplo, en planteamientos sobre los mercados de carbono que consideran que los precios de las emisiones presentes deben ser bajos —como están ahora, por cierto—, para subir progresivamente en el futuro. En cuanto a las políticas, reconocer el carácter cumulativo del CO2 tendría como resultado enfatizar la urgencia de tomar medidas en el presente y dar mayor valor a acciones tempranas para reducir las emisiones de soluciones cuyos riesgos no han sido bien estudiados, sobre los cuales no hay certeza de poder ser controlados y que pueden tener consecuencias potencialmente muy graves, por ejemplo, sobre la seguridad alimenticia.
(IPCC 2014b: 13). En la división del trabajo a la que nos hemos referido, el Grupo de Trabajo III (GT-III), encargado de trabajar sobre mitigación, recibe información del GT-I para trabajar sobre costos y sobre los requerimientos tecnológicos e institucionales de las diferentes políticas de mitigación. Uno de sus principales resultados es haber puesto en evidencia que muchas opciones existen para encaminar a las economías por senderos de desarrollo de bajas emisiones, al mismo tiempo que se alcanzan otros objetivos (cobeneficios).

De manera esquemática los puntos clave del volumen del GT-III son los siguientes:

— El crecimiento sin precedente de los GEI en los últimos 10 años pone al mundo ante el peor escenario de los publicados previamente por el IPCC.

— La próxima década no debería ser como la última. Es necesario detener las emisiones de CO₂ provenientes de combustibles fósiles y de procesos industriales si se quiere limitar el aumento de la temperatura global promedio a 2 grados.

— De mantenerse las tendencias y las políticas actuales, el calentamiento global puede superar los 4°C hacia el final del presente siglo: “Escenarios de la línea de base que no tienen la mitigación adicional, resultan en aumentos de la temperatura media de la superficie mundial en 2100 de 3.7 °C a 4.8 °C en comparación con los niveles preindustriales” (IPCC 2014b).

— Tecnologías alternativas están disponibles y son cada día más accesibles en términos económicos. Se pueden reducir emisiones usando energía eólica, energía solar, vehículos eléctricos, edificios eficientes, así como a través de diferentes medidas relacionadas con una mayor eficiencia energética. Escogiendo las buenas opciones, puede lograrse una reducción sustancial de la contaminación y variados impactos ecológicos y sanitarios asociados.

— Ha habido avances en décadas pasadas, pero no suficientes para reducir las emisiones a los niveles requeridos. Si continúan creciendo las emisiones de CO₂ en la próxima década se excederá la meta de los 2°C. Sobrepasarla será costoso y arriesgado, pues se tendrán que desplegar tecnologías aún no probadas para remover CO₂ de la atmósfera.

— Algunas políticas climáticas han sido implementadas en los niveles nacional, regional y local. No han detenido las emisiones, pero se han logrado experiencias con programas como los mercados de carbono, los de fiscalidad ambiental, los del impulso a las renovables y la adopción de estándares tecnológicos.
Una atención particular al sistema energético.
En el largo plazo, escenarios bajos en carbono dependerán de una plena 'descarbonación' de la oferta energética

El sistema energético ha merecido en los informes del IPCC una atención particular, al tener ese sistema un papel crucial para alcanzar el objetivo de estabilizar las emisiones en niveles compatibles con el aumento de la temperatura por debajo de los 2°C. En ese sentido, se plantea la necesidad de su transformación radical cuya velocidad, sin embargo, se ve limitada por diversas restricciones, inercias y fenómenos de lock-in: periodos de maduración de las inversiones, duración de las instalaciones y equipos ya instalados, la manera como se han construido y construyen las infraestructuras urbanas y los sistemas de transporte, etcétera.

Sobre esos puntos el GT-III hace advertencias claras: “Las obras de infraestructura y productos de larga duración que encierran las sociedades en vías de emisiones intensivas de GEI pueden ser difíciles para cambiar o muy costoso, lo que refuerza la importancia de una acción temprana para una mitigación ambiciosa” (Summary for Policy Makers, 4.2).

El cambio climático y sus impactos presentan desafíos cada vez más importantes para la producción, transmisión y distribución de la energía. La demanda de energía aumenta en el mundo, sobre todo por el crecimiento económico y de la población, lo cual está causando que también se intensifiquen las emisiones de GEI del sector energético. En lugar de crecer deberían disminuir, para que ese sector contribuya a mantener la temperatura bajo 2°C. La IEA (2013), por ejemplo, considera que sería necesario que las emisiones de CO₂ causadas por el sector energético disminuyeran en un 31.4% entre 2012 y 2035. Si no se hace nada, esas emisiones crecerán en 36.1% en ese mismo lapso.

Reducciones significativas de GEI se pueden obtener mejorando la extracción y conversión de combustibles fósiles, mediante cambios hacia combustibles de bajo carbono (por ejemplo, generar energía eléctrica con gas en lugar de carbón), con mejoras en la eficiencia energética, con una mayor participación de las renovables

4 Una concepción integral de los sistemas energéticos cubre toda la cadena de actividades para el aprovisionamiento energético, desde la producción hasta el consumo final pasando por transformación, transmisión y transporte (Bhattacharyya, 2011). El IPCC, en el capítulo 7 del Quinto Informe, se refiere solamente al sector energético, el cual comprende los procesos de extracción, conversión, almacenamiento, transmisión y distribución. A los relacionados con el uso final de la energía en la industria, el transporte, la construcción, la agricultura y la silvicultura dedica capítulos específicos.
y reducción de la demanda final de energía. El desarrollo de tecnologías bajas en carbono es clave para la reducción de las emisiones, pero, además, traen un conjunto de cobeneficios en el plano de la salud, del empleo, del desarrollo local, entre otras cuestiones. Lo que ha pasado, sin embargo, es que la tendencia que se venía dando hacia una gradual descarbonización de la energía se ha revertido.

A los temas y desafíos habitualmente asociados con el cambio climático y la energía, se han introducido otros nuevos. Es el caso del “acceso a la energía” y temas relacionados como el de la pobreza y la desigualdad energéticas. “Los impactos del cambio climático pueden exacerbar la pobreza en la mayoría de los países en desarrollo y crear nuevas bolsas de pobreza en ambos, países desarrollados y en desarrollo” (IPCC, 2014c: 27). El sistema energético debe proveer en servicios energéticos a una población creciente, en particular a los que se encuentran excluidos. Esa enorme tarea deberá enfrentarla de manera compatible con el objetivo de estabilizar las emisiones, al mismo tiempo que es bastante probable el incremento de la participación de energías comerciales convencionales. Las políticas de acceso a la energía generan mayores oportunidades de empleo, de mejora de los servicios básicos (escuelas, carreteras, centros de salud, acceso a medios de comunicación, entre otros), de incrementar la oportunidad de ingresos, de aumentar la seguridad alimentaria, de disminuir las disparidades sociales: el reto es hacer realidad esas oportunidades buscando al mismo tiempo alternativas energéticas eficientes, limpias e innovadoras.

Lugar y papel de la economía en la división del trabajo que se instaura en los informes del IPCC

Entre los tres grupos de trabajo del IPCC se ha establecido una división del trabajo que conduce a una visión limitada de la economía y del quehacer económico. Los “científicos duros” (Grupo de Trabajo I) se dedican, como hemos visto, a estudiar las bases físicas del cambio climático y a establecer la relación entre actividad humana y cambio climático cada vez con mayor certeza. Sobre esas bases, los economistas deben ocuparse en calcular riesgos, costos de diferentes opciones y las inversiones necesarias. En ese marco, un trabajo científico que contiene elementos que pueden volcarse en el análisis del funcionamiento económico recurre a la economía solamente por la capacidad que se le atribuye de evaluar impactos, costos y riesgos; de cuantificar el potencial económico de las principales opciones energéticas de mitigación (cambio de combustibles, eficiencia energética, energías renovables,
energía nuclear, captura y secuestro de carbono, etc.). Al ser relegada a esas tareas, la economía pierde una buena parte de su potencial científico.

Cuando se habla de economía es necesario precisar. Desde la perspectiva de las ciencias “duchas”, la economía puede ser una ciencia cuando trabaja como ellas. La más cercana es la que permite la cuantificación, la modelización y la entrega de datos. Esa posición fue resumida hace años por Maurice Allais, Premio Nobel de Economía 1978:

— la coherencia lógica de las teorías económicas puede ser probada gracias a las matemáticas;
— por disponer de una mejor información los hechos se conocen cada vez mejor;
— se cuenta, además, con importantes desarrollos de la estadística y la informática;
— en economía, como en la física, hay regularidades indiscutibles. La economía entonces puede utilizar el cálculo como lo hace la física y fundarse en relaciones objetivas verificables.

En ese marco de comprensión de la economía, se espera de los economistas que hagan suyas las recomendaciones de los científicos sobre el techo máximo de concentraciones (450 ppm), que prevean la evolución de las emisiones y contribuyan a la elaboración de políticas.

Los métodos preconizados son una consecuencia de la visión que predomina sobre la economía, la cual conduce a principios e instrumentos de la teoría neoclásica. Ejemplos:

— funciones de bienestar social proporcionan las bases para evaluar los efectos del cambio climático y de las medidas de mitigación, a través de técnicas como el análisis costo-beneficio;
— la maximización del bienestar neto, nivel óptimo de emisiones, se determina por la igualdad entre el beneficio marginal y el daño marginal.

En cuanto a los instrumentos económicos para alcanzar los objetivos fijados al menor costo, se privilegian los enfoques "basado en el mercado", “enfoque por precios”.

En el análisis de los impactos mismos del cambio climático sobre el funcionamiento de los ecosistemas, la biodiversidad, la salud y otros impactos sobre el bienestar, puede decirse que hay una cierta apertura en la línea de una distinción que se puede establecer entre daños mercantiles y no-mercantiles (Goulder, Pizer,
2006). Los primeros provienen de cambios en precios y cantidades de los bienes comercializados provocados, por ejemplo, por cambios de temperatura y precipitaciones en la producción agrícola. Los segundos incluyen la pérdida directa de utilidad proveniente de climas más hostiles, pérdida de servicios de los ecosistemas o pérdida de biodiversidad.

El IPCC ha avanzado mucho en la explicitación de esos fenómenos, pero a la economía le quedan muchos desafíos por analizar en todas su complejidad, tanto los mercantiles como los no mercantiles.

Apertura del campo de intervención de la economía, con continuidad en el enfoque y una aplicación pragmática de la teoría económica convencional

El espacio para la economía se ha ampliado a lo largo de los informes con la introducción sucesiva de nuevos temas:

- FAR, 1990: surgen los temas económico-sociales;
- SAR, 1995: opciones de bajo costo; preocupación por temas relacionados con la equidad;
- TAR, 2001: beneficios y “trade-offs” para el desarrollo sustentable;
- AR4, 2007: beneficios del desarrollo sustentable para el cambio climático.

En esa evolución se fijó como propósito que el AR5 tuviera un valor agregado en comparación con los anteriores: un tratamiento mejorado de los temas sociales, económicos y éticos y una discusión en profundidad acerca de su aplicación en el contexto del desarrollo sustentable. De hecho, se estaría reanudando así, uno de los objetivos de la UNFCCC (Convención Marco de las Naciones Unidas para el Cambio Climático, adoptada en 1992): “prevenir la interferencia antropocéntrica peligrosa con el sistema climático”.

Desde entonces, quedaron planteadas preguntas que hubieran permitido elaborar un programa para una intervención de la economía con mayor profundidad y desde perspectivas críticas, en colaboración con otras ciencias humanas y sociales. Algunas de esas preguntas son las siguientes:

5 Del artículo 2 de la Convención: “El objetivo último de la presente Convención y de todo instrumento jurídico conexo que la Conferencia de las Partes podrá adoptar, es lograr, de conformidad con las disposiciones pertinentes de la Convención, la estabilización de las concentraciones de GEI en la atmósfera a un nivel que impida las interferencias antropogénicas peligrosas en el sistema climático".
• ¿En qué momento las interferencias antropocéntricas con el sistema climático, que siempre han existido, se convierten en "peligrosas"? Muchas de ellas son necesarias y beneficiosas para la producción de bienes indispensables para la satisfacción de múltiples necesidades. No se trata solamente de un problema de las ciencias físicas o biológicas: definir "peligroso" implica fundamentalmente valores y preferencias.

• Una vez respondida la pregunta anterior ¿qué hacer al respecto? Como muchas de las interferencias son de carácter económico, se abre un espacio para el análisis económico y su contribución en la elaboración de propuestas.

• ¿De qué manera las acciones para mitigar el cambio climático y las cargas que de ello resultan pueden ser divididas entre los países y las generaciones? Aquí, el análisis económico se conecta con cuestiones éticas: 'reparto de la carga', 'esfuerzo compartido'.

Esas preguntas hubieran podido llevar a la profundización de problemáticas y enfoques. Lo que se dio fue una apertura del campo de intervención de la economía, pero con una continuidad en el enfoque y una aplicación pragmática de la teoría económica convencional. Por este pragmatismo, se puede hablar de un mainstream ampliado, en el cual se pueden distinguir los siguientes componentes:

— Regulación interna: desde esta perspectiva se considera que el sistema económico está en equilibrio o que puede recuperarlo a través de las decisiones y acciones de actores racionales.

— Regulación externa: el libre juego del mercado puede conducir a crisis costosas; es necesario, entonces, que un actor externo intervenga (el Estado). El orden social y económico es el resultado de un equilibrio complejo entre decisiones individuales y colectivas.

— La economía vista como un sistema abierto a lo social y a los procesos físicos con los cuales interactúa.

Jean Tirole y las conexiones de su obra con el "mainstream ampliado"

Dentro de lo que hemos llamado un mainstream ampliado se da una posición básica acerca del papel del mercado, pero se está consciente de que se pueden presentar

⁹ Esa posición no solamente abarca temas microeconómicos; también los sectoriales y macroeconómicos. Es el caso del capítulo 10: " Sectores claves económicos y de servicios", GT-11, el cual analiza
“fallas”, lo cual abre el paso a acciones de regulación por parte del Estado o de la “comunidad internacional”. Se trata de posiciones que parten de fundamentos de la teoría neoclásica, la cual tiene por objeto de estudio una economía de mercados competitivos, pero hacen a un lado las hipótesis más restrictivas del modelo de competencia perfecta. Tratan de acercar esa teoría al análisis de temas concretos evitando los fundamentalismos. Como ha dicho Jean Tirole, Premio Nobel de Economía 2014: “la competencia puede ser peligrosa cuando se convierte en religión” (X. de la Vega, 2008). Si bien se mantiene la idea de que la “economía pura” establece con rigor la norma de una economía perfectamente competitiva, de manera pragmática se debe intentar acercar la realidad lo más cerca de esa norma. Aquí es donde se sitúa el papel del Estado a quien se le otorga el estatuto de implantar las condiciones para que los mercados funcionen: un Estado regulador. Mercados desregulados producen resultados socialmente indeseables: precios muy por encima de los costos, empresas improdutivas que sobreviven solamente por su capacidad de bloquear la entrada de nuevas y más productivas.

Tiene sentido acercarse a la obra de Jean Tirole. Su obra, con la de sus predecesores y colegas en esa misma línea, puede ser una guía para explicitar de manera coherente el tratamiento de los temas económicos en los informes del IPCC. Se trata de un teórico de la regulación pública en una economía de mercado: un neoclásico regulador, por contradictorio que parezca en los términos. Sus análisis tienen aplicaciones muy concretas en los sectores de la energía, de las telecomunicaciones, de la informática y los ambientales. Ha construido un marco general para el diseño de políticas en diferentes industrias, pero considera que la mejor regulación es aquella que se adapta a las condiciones específicas de cada industria.

Se puede decir que Jean Tirole es un buen representante de ese mainstream ampliado. Un ejemplo de lo anterior es su adhesión al cap and trade, pues presenta la misma distribución de papeles que él considera virtuosa entre el Estado y el sector privado: el cap es fijado por los Estados ya que se trata de bienes públicos y el trade reparte los derechos de contaminar como bienes privados, y, de esa manera, realiza mediante el mercado una mitigación “costo-efectiva”. En el informe que elaboró sobre el cambio climático (Tirole, 2009), el mercado debe ser lo más libre

las implicaciones del cambio climático sobre la actividad económica y sectores económicos, así como sobre el bienestar y el desarrollo económico. Una frase puede resumir la posición básica de ese capítulo: “El buen funcionamiento de los mercados proporcionará un mecanismo adicional para la adaptación y por lo tanto, tiende a reducir los impactos negativos y aumentar los positivos para cualquier sector o país específico”.

99
 posible, con ajustes e incitaciones cuando sea necesario, todas de tipo económico y orientadas al mercado. En ese informe, se pronuncia contra las normas técnicas impuestas en determinados sectores y contra las regulaciones que no se sitúen en el marco de funcionamiento de los mercados. No está de acuerdo con los impuestos al carbono pero sí con un mercado que tenga un precio internacional único del carbono, fundado de preferencia en subastas de “derechos a contaminar”. El propósito es conciliar eficiencia (un precio único para el carbono), equidad (mediante una distribución inicial de los derechos a contaminar) y restricciones de participación a este acuerdo (mediante esa distribución y por la conclusión de acuerdos —comerciales, por ejemplo— contingentes a esa participación). A lo anterior se agregan productos derivados para cubrirse contra los riesgos: los mercados financieros al servicio de la lucha contra el cambio climático.

Según Tihore, sólo un precio elevado del carbono permitiría alcanzar el objetivo de eficiencia de manera duradera, a través del desarrollo de energías limpias, la modificación de los sistemas de transporte y de infraestructuras y la reducción de la deforestación. Tiene una crítica fuerte a los “mecanismos de desarrollo limpio”, prefiriendo a esos mecanismos la inclusión de los países en desarrollo en el mercado de carbono otorgándoles cuotas generosas de permisos.

Las ideas de Tihore tendrán sin duda influencia en la Conferencia de París, sobre todo después del Nobel de Economía 2014. En particular, acerca de las condiciones de un buen acuerdo, el cual requiere el establecimiento de: 1) instrumentos económicos incitativos que permitan minimizar el costo de la lucha contra el cambio climático; 2) mecanismos que permitan la continuidad y permanencia de los compromisos, y 3) mecanismos de transferencia que hagan posible la adhesión de los principales países emisores.

En resumen, los puntos importantes de un conocimiento económico que se ha venido imponiendo progresivamente son los siguientes: 1) el CO₂ es un problema de contaminación, para los economistas una externalidad. El cambio climático representa la más importante falla de mercado en la historia de la humanidad (Stern, 2006; Tol, 2009; Damian, 2012). Como los contaminadores no hacen suyos ni toman en cuenta los costos asociados con los daños que causan, se producen y consumen muchos productos contaminantes, como los combustibles fósiles emisores de GEI; 2) puesto que el cambio climático es global, un acuerdo internacional que comprometa a los Estados firmantes es la única respuesta apropiada a un desafío planetario, y 3) la señal de los precios que ofrecen las incitaciones del mercado (carbon tax, permisos negociables) es el instrumento más eficiente para
modificar los comportamientos de empresas y de los consumidores a fin de que adopten tecnologías y adquieran bienes con un menor contenido de carbono.

LA TRADUCCIÓN DE LOS ENFOQUES ECONÓMICOS AL PLANO DE LAS POLÍTICAS

En el GT-III, especialmente en el capítulo “Sistemas energéticos”, se evalúan las actuales políticas climáticas en cuanto a sus resultados en la reducción de emisiones del sector energético y a los cambios de la estructura de ese sector (a través de la orientación de las inversiones).

En términos generales, se considera que políticas efectivas dirigidas a reducir drásticamente las emisiones de CO₂ deben incluir un esquema global para la fijación de precios del carbono, regulaciones y un desarrollo institucional adecuado a las necesidades específicas de cada país, en particular de los menos desarrollados. Las políticas orientadas al mercado actúan al cambiar los precios relativos, aumentando o bajando los costos según se trate de actividades altamente emisoras o con bajas emisiones.

Las políticas sectoriales consideradas son:

- dirigidas a poner un precio a los costos externos de las emisiones, en particular para guiar las inversiones de las empresas;
- información y regulaciones cuando los instrumentos económicos para guiar las decisiones no son políticamente viables;
- políticas tecnológicas enfocadas a la innovación, a inversiones directas de largo plazo, a medidas financieras y regulatorias para el despliegue de las renovables, entre otras;
- políticas facilitadoras o propiciatorias (“enabling policies”) para crear un ambiente favorable a las anteriores.

En la evaluación de los resultados de esas políticas se privilegian determinados métodos: por ejemplo, enfoques en la perspectiva del equilibrio general se consideran indispensables para la realización de análisis de los efectos macroeconómicos del cambio climático. Asimismo, modelos de equilibrio general computable constituyen herramientas operacionales estándar para evaluar políticas climáticas en los niveles nacionales, subnacionales y supranacionales y para medir sus efectos sobre la asignación y distribución de recursos, así como los cambios respecto de algún punto de referencia.
Políticas dirigidas a poner un precio a los costos externos de las emisiones

Las políticas dirigidas a poner precio a las emisiones (para combatir las externalidades asociadas a ellas) merecen un interés particular por la difusión que tienen las propuestas y debates que suscitan:

- **Mercados de carbono** (como el *European Trade System*, EU-ETS).
- **Impuestos al carbono**, con posibles consecuencias: sobre las inversiones (nuevas instalaciones) y decisiones operativas (como pasar del carbón al gas en la generación de electricidad), entre otras.

Sistemas como el ETS y los impuestos al carbono son llamados en el marco de los trabajos del IPCC “instrumentos económicos” al considerarse explícitamente que, por tratarse de consumidores racionales, firmas y mercados completos, logran cualquier nivel de reducción de emisiones de la manera menos costosa posible. Más allá de consideraciones sobre el trasfondo teórico de esos planteamientos, es importante poner en evidencia deficiencias de sistemas como el EU-ETS, el cual es muy sensible a la coyuntura de corto plazo. La situación actual en Europa es ilustrativa en este sentido: en los primeros meses del 2014 el precio por tonelada de carbono estaba por debajo de los € 4.00 cuando en 2007 se situó por encima de € 18 incluso había llegado a más de € 30 en abril de 2006. Los precios actuales en ese mercado no favorecen la reducción del consumo de combustibles fósiles ni de las emisiones, así como tampoco favorecen las inversiones en nuevas tecnologías. Por todo ello, no proporciona las mejores señales para orientar una transición energética de largo plazo.

Además del EU-ETS, existen otros mercados de carbono, pero desde varias perspectivas se considera necesario pasar de precios de mercados locales o nacionales a un sistema de precios globales y armonizados. Organismos como el FMI y la OCDE se adhieren ahora a ese planeamiento. El mismo IPCC adopta en sus escenarios la hipótesis de un *precio global de carbono* (IPCC, 2014b). Por su parte la IEA considera que un precio global del carbono no necesariamente sería perjudicial al crecimiento:

7 Véanse, por ejemplo, los análisis y propuestas de Stéphane Dion, miembro del Consejo privado de Canadá y diputado federal, Cámara de los Comunes. Fue Ministro del Ambiente y, en esa calidad, presidió la COP 11, Montreal, 2005.
La fijación de precios de carbono no es necesariamente perjudicial para la competitividad industrial: todo depende de cómo se implementa y si una acción similar se toma en las economías competidoras. [...] Además, parte de todos los ingresos derivados de los precios del carbono se puede reciclar de nuevo hacia los usuarios de energía en forma de inversiones para mejorar la eficiencia energética o a través de otras políticas, como un mayor apoyo para la industria; por lo tanto, esto puede en realidad mejorar la competitividad industrial y energética. (IEA, 2013)

Un problema importante a considerar por ese tipo de propuestas es la necesidad de un acuerdo internacional, de tal manera que todos los agentes económicos actúen con las mismas reglas. De no ser así aquellos que las acepten pueden verse perjudicados en provecho de los que actúen como free riders. El futuro de los mecanismos de mercado, específicamente de los esquemas de mercados de carbono y de la posibilidad de un precio global del carbono, serán seguramente algunos de los temas importantes de la Conferencia de París de diciembre 2015 (COP21, 21st Conference of the Parties on Climate Change). A ella llegarán probablemente propuestas que se han hecho como las de S. Dion y E. Laurent (2012).

En el contexto de la crisis global iniciada en 2007, de manera paralela a esos mercados, han surgido otros en los cuales se especula sobre los permisos para contaminar y sobre los contratos de seguros relacionados con catástrofes naturales potenciales causadas por el cambio climático. Un buen tema de investigación es el de saber si el imparable aumento de las emisiones se le puede dar respuesta mediante una combinación de mercados ambientales y financieros.

Políticas tecnológicas complementarias a las de precios del carbono

Muchas opciones energéticas “bajas en carbono” (energías renovables) no son todavía competitivas con base en el precio de mercado de la electricidad, aún si éste se ve aumentado por políticas que tienen por blanco los GEI (IPCC SRREN, 2011; IPCC SRCCS, 2005). En consecuencia, si se quiere incrementar la utilización de esas tecnologías son necesarias políticas de investigación y desarrollo (I&D) y políticas orientadas a la difusión y despliegue de nuevas tecnologías. No se trata solamente de subvenciones: también apoyos a la comercialización y a la transferencia de tecnologías, por ejemplo. Esas políticas, en su conjunto, según el balance que hace el IPCC, han tenido éxito en el crecimiento de las energías renovables (IPCC SRREN, 2011) y en la reducción de sus costos, como en el caso de la energía eólica y de la solar fotovoltaica.
Tomar en cuenta otras “fallas del mercado” conduce también a la necesidad de políticas tecnológicas. Es el caso de la protección de los derechos de propiedad intelectual (por ejemplo, el mercado de patentes). A causa de esa “falla” las inversiones privadas en renovables y la utilización eficiente de la energía son, según análisis del IPCC, “menos que socialmente óptimo”, lo cual constituye un argumento en favor de las subvenciones.

Las políticas tecnológicas tienen, pues, un lugar en las propuestas del IPCC, sin embargo, la primera opción son las políticas basadas en los precios del carbono, como lo ha sostenido Ottmar Edenhoffer, uno de los copresidentes del Grupo III, al comentar un artículo que analiza los beneficios conjuntos de las energías solar y eólica para la salud, el ambiente y el clima.8

LOS PROBLEMAS DE LA EVALUACIÓN ECONÓMICA. IMPACTOS Y ADAPTACIÓN

Una diferencia importante respecto al Cuarto Informe (AR4) es que el Quinto (AR5) pone mayor énfasis en la administración de las medidas de adaptación, enfocándose en el análisis del riesgo como apoyo a la toma decisiones. De hecho, el Informe del Grupo II (impactos, adaptación, vulnerabilidad) considera que anticipar, prepararse y responder al cambio climático es un proceso de administración del riesgo, informado por el conocimiento científico y por valores y objetivos de pueblos y sociedades. Plantea que existe una gran incertidumbre acerca de la vulnerabilidad y respuestas de los sistemas humanos y naturales interconectados.

Cuando se estudian los impactos del cambio climático, se plantea inmediatamente el problema de su evaluación y medición. A ese respecto, queda un amplio espacio para la intervención de los economistas, tomando en cuenta lo que afirma el informe del GT II: “Los impactos económicos globales del cambio climático son difíciles de estimar”; las evaluaciones son “imperfectas”. Un calentamiento de 2.5°C reduciría el PIB mundial entre 0.2% y 2%. Pero “las pérdidas pueden más bien crecer que bajar”. Uno se puede preguntar por qué las estimaciones no solamente se expresan en términos tan aproximativos, sino por qué son bajas, tomando como referencia

8 “Dirigiéndose directamente a las externalidades es en cualquier caso la mejor opción. El estudio podría malinterpretarse en el debate público por grupos de interés que argumentan que la promoción de las energías renovables es una manera más favorable para reducir las emisiones que los precios del CO2” (Edenhofer et al., 2013).
las del “Informe Stern” (Stern, 2006), el cual evalúa el costo del cambio climático hasta en 20% del PIB. Una posible respuesta es que ese informe toma como base escenarios de 4 - 5.6°C de aumento de la temperatura: es difícil estudiar los impactos en un mundo con esas temperaturas. Las del IPCC pueden ser conservadoras, pero ubicadas en un mundo más cercano al actual, más fácil de imaginar y prever.

Las insuficiencias de las estimaciones plantean nuevos retos a cuyo estudio los economistas pueden contribuir:

— se utilizan modelos muy simples en relación con la complejidad de los problemas;
— no se ha tomado suficientemente en cuenta el papel de las catástrofes naturales que afectan el desarrollo en el largo plazo;
— se han enfatizado las consecuencias del calentamiento sobre ciertos sectores como la agricultura, simplemente por la disponibilidad de trabajos
— hacen falta datos y estudios sobre los países en desarrollo, los más vulnerables al cambio climático.

En cuanto a los costos de la adaptación, el informe no proporciona cifras. Ello se debe, según el GT-II, a que la metodología aplicada y las hipótesis no fueron suficientemente convincentes. Había también temor de que cifras de calidad insuficiente fueran mal utilizadas en las negociaciones internacionales en curso o por los medios, como ha sucedido en ocasiones. Por todo ello, el informe señala solamente que es necesario proseguir los estudios sobre ese tema y que hay una brecha enorme entre los recursos dedicados a la adaptación y los que se consideran necesarios. Las medidas que se deben tomar representan centenas de miles de millones de dólares mientras que los recursos que se dirigen actualmente llegan apenas a centenas de millones.

Puede decirse, en resumen, que se han hecho progresos enormes en la comprensión de los impactos físicos del cambio climático; no tanto sobre los económicos. En donde sí hay avances es en un plano más general, por ejemplo, en relacionar mejor la adaptación con el desarrollo. De esta manera, se pone en evidencia que son los más vulnerables los que no tienen acceso a buenas condiciones sanitarias, a agua tratada para consumir, a formas modernas de energía, a servicios de salud. En los países desarrollados, dado que las infraestructuras existen, la pregunta es: ¿cuánto costará adaptarlas? En varios países en desarrollo es necesario empezar por hacerlas, la pregunta es entonces: ¿cómo se financiará su construcción? Para avanzar en todo ello ayudarían mejores evaluaciones y una mayor capacidad para
diseñar e implementar políticas y regulaciones apropiadas para la mejor realización de las inversiones.

Se han dado también avances en la comprensión de factores “no climáticos” como se puede constatar en los siguientes planteamientos:

— la vulnerabilidad no es producto de una sola causa: más bien de procesos sociales que se interconectan y resultan en desigualdades de estatus socioeconómico y de ingreso;
— diferencias en vulnerabilidad resultan de desigualdades multidimensionales producidas por procesos de desarrollo desiguales;
— esas diferencias configuran riesgos diferenciales producidos por el cambio climático;
— personas marginalizadas social, económica, cultural, política o institucionalmente son especialmente vulnerables al CC. La desigualdad hace que los impactos del cambio climático y la carga de la adaptación pesen sobre todo, de manera desproporcionada, sobre los más vulnerables y los transfiera a las futuras generaciones.

CONSIDERACIONES FINALES

Los informes del IPCC pueden leerse desde una perspectiva que considera a la economía como un sistema abierto a lo social y también a los procesos físicos con los cuales interactúa. Además de lo que representan en términos de una sistematización de la literatura científica relevante para entender las bases del cambio climático, así como sobre sus riesgos e impactos, esos informes ilustran a los economistas y a otros científicos sociales sobre numerosas carencias y desafíos de sus disciplinas. El trabajo transdisciplinario es indispensable pues en esos desafíos se cruzan innumerables factores de tipo económico, social, político, cultural: la generación de riqueza y su distribución, la evolución de la población, la migración, el empleo, el acceso a la tecnología y la información, las estructuras de gobernanza y las instituciones para solución de conflictos, entre otros muchos.

Ante esos desafíos, en un informe elaborado por el International Social Science Council sobre el estado de las ciencias sociales en el mundo (ISSC/UNESCO, 2013), se hace un “urgente y decisivo llamado a las ciencias sociales para investigar de manera más efectiva las causas humanas, las vulnerabilidades e impactos del cambio climático y, en consecuencia, a informar sobre respuestas sociales a los
desafíos relacionados con la sustentabilidad que la sociedad enfrenta ahora”. La expresión “investigar de manera más efectiva las causas humanas” evoca carencias pero alude también al reto de participar en el campo del Grupo de Trabajo I del IPCC, usualmente llamado “La Ciencia”, del cual están excluidas o no han sabido participar las ciencias sociales. Sobre ello hay una constatación crítica en el mencionado informe:

Los problemas ambientales actuales, en particular el cambio climático, son campos reconocidos de investigación en la mayoría de las disciplinas de las ciencias sociales. Pero a pesar de estos esfuerzos, las ciencias sociales se han mantenido al margen de la investigación del cambio ambiental global en la era de la posguerra. El campo sigue estando dominado por las ciencias naturales.

Al constatar lo anterior, el informe del ISSC enfatiza la necesidad de realizar un trabajo científico que atraviese las ciencias naturales, físicas, ingenieriles, humanas y las relacionadas con la salud, para poder entregar un conocimiento creíble que contribuya a la solución de los problemas que encara el mundo en el plano global, uno de ellos el cambio climático calificado en ese informe como “uno de los más grandes desafíos globales que enfrenta la humanidad”.

En cuanto a la economía, en una división del trabajo cuestionable, como hemos visto, se le pide que estime y valore la vulnerabilidad ante el cambio climático, que evalúe los impactos posibles, que defina opciones para la adaptación y la mitigación, que proponga políticas públicas. En la base de todo ello, hay una exigencia de evaluación y medición a la cual, usualmente, se responde con los conceptos y herramientas de la teoría económica convencional, aunque con ciertas aperturas: lo que hemos llamado un mainstream ampliado.

Es necesario conocer y valorar los estudios realizados y sus resultados con una actitud crítica:

Aunque la ciencia y la economía del cambio climático han evolucionado mucho en las últimas tres décadas, se ubican todavía en una etapa temprana de desarrollo. Los métodos y la información recientemente desarrollados deben ser evaluados cuidadosamente, constantemente revisados y corregidos cuando sea necesario, siempre en una lucha por construir conocimientos científicos sólidos. En este contexto de incertidumbre, información escasa y limitada aplicabilidad de las metodologías actuales, el rigor científico y técnico deberían ser la condición necesaria para crear cimientos sobre los que se finque la toma de decisión (Estrada et al., 2011:2).
Ante las carencias de enfoques inspirados en la teoría neoclásica, se ha desarrollado la "economía ecológica" a la cual se le ven posibilidades de un trabajo conjunto con corrientes heterodoxas (Douai, 2012). Entre ellas se encuentran las de corte institucionalista que destacan la inserción de las relaciones hombre-naturaleza en el marco de instituciones, culturas y enfoques éticos. Se plantea así la posibilidad de una "economía socio-ecológica" con la cual se pueden conectar análisis poskeynesianos y neomarxistas. Esto último, siempre y cuando se introduzca el estudio del funcionamiento del sistema socioeconómico en su conjunto, que permita capturar la "complejidad y multidimensionalidad de las estructuras sociales y económicas y de los sistemas naturales así como sus interacciones dinámicas" (ibidem).

En un campo más circunscrito, la Association for Heterodox Economics, en un taller realizado en 2008, ha planteado la posibilidad de una "economía ambiental y de sustentabilidad" con dos principales áreas de investigación (Douai, 2012): 1) el estudio de las relaciones economía-ambiente (u hombre-naturaleza) en una perspectiva socio-histórica; 2) el estudio de las interrelaciones entre preocupaciones ambientales intergeneracionales (responsabilidad) y justicia social (solidaridad).

Búsquedas, señalamientos y lineamientos para avanzar: todo ello da muestra de un campo dinámico de reflexión en torno al trabajo científico sobre el cambio climático y a las exigencias para las ciencias sociales, especialmente la economía.

BIBLIOGRAFÍA Y REFERENCIAS

AGECC (The Secretary-General’s Advisory Group on Energy and Climate Change) (2010). "Energy for a sustainable future. Summary report and recommendations".

